阳电提示您:看后求收藏(天籁书屋www.qdfangde.com),接着再看更方便。
中任意分布,可能的情形会有2^10000之多。
2^10000,毫无疑问,这一数字是难以想象的巨大。
然而所有空气分子都跑到一边、另一边出现真空的情形,又有多少种呢?
要么所有分子都在a,要么所有都在b,数一数,这样的极端情形为何几乎不可能出现,原因也就不言自明:
这种情形,只有区区2种方案,可以做得到。
10000个空气分子的任意分布,自发出现一半空气、一半真空的概率是1/2^9999,这个数字究竟有多小呢,数学家可能会感兴趣,但是对物理学家而言,实践意义上,如此微末的数字根本就等于零。
而且这还是区区10000个空气分子的情形;
实践中,哪怕一立方厘米的地表空间,在零摄氏度、标准气压时,都会充斥着2.7*10^19个空气分子。
规模越大,偏离平均分布的情形,越会罕见到根本不可能出现。
虽然是用分子位置举例,换成其他的物理量,譬如速度、能量,也是一样道理。
建立在统计学上的热力学三定律,道理,非常简洁,虽然背后的机理深不可测,站在不求甚解、只看结果的角度,其正确性却是不言自明。
但,一旦将这些定律应用到宏观层面,甚至宇宙这样的尺度,又会怎么样呢。
绝对正确的热力学三定律,与民众的误解不一样,原则上,并不排除系统状态的极端化,也就是进入一些相对不太罕见、不太容易自发形成的状态,这种现象,在客观世界司空见惯,用学术语言来讲,是系统可以借助外来的能量、或者说低熵源,来影响自身粒子的分布和行为,即,降低自身的熵值。
正因为这样的规则,在盖亚,才衍生出从自然现象到生命奇迹的一系列眼花缭乱。
可是再怎样纷繁芜杂的世界,物理上的过程,熵的增加,或曰,系统分布从罕见状态到常见状态的滑落,却是绝对无法违抗的宿命。
盖亚,年龄逾四十六亿的古老存在,分布在其表面的生命形态,万变不离其宗,都需要外界提供的低熵源来维持自身的生命活动,低熵的来源,本质上都是一点四亿公里外的恒星,所发出的光芒。
生命依赖恒星的光和热,才能生存,科普读物往往从能量转移的角度描述这一过程。
这样讲,当然是正确的,不过从热力学的角度,发生在恒星到生命体、再到环境的熵转移,才是更本质